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ABSTRACT
Rotation inÑuences the dynamical stability of a star in both direct and indirect ways. Directly, it

supplies rotational kinetic energy to the star and changes the starÏs hydrostatic structure. Indirectly, it
inÑuences the possible course of stellar evolution. Calculations show that, for a luminous blue variable
(LBV), rotation is not expected to greatly a†ect the onset of dynamical instability in any direct way, but
could be important through its indirect evolutionary e†ect on the starÏs luminosity-to-mass ratio. If the
classical LBVÏs are evolving in an advanced stage of central helium burning, when their envelopes are
most prone to dynamical instability, the luminosity-to-mass ratio would probably be increased by rota-
tion. It is shown that a brightening of the star lessens its dynamical stability and so leads to a somewhat
hotter e†ective temperature during the phase of dynamical instability. How rotation modiÐes the
Eddington luminosity limit is also discussed.
Subject headings : stars : evolution È stars : oscillations È stars : rotation È

stars : variables : other (luminous blue variables)

1. INTRODUCTION

In the conventionally presented scheme of stellar evolu-
tion, a massive star becomes a luminous blue variable
(LBV) during, or shortly after, the main-sequence phase. At
this time, S DoradusÈtype eruptions are presumed to
produce an enormous loss of mass and to prevent evolution
to the red (Sterken & Wolf 1978 ; Humphreys & Davidson
1979 ; Bressan et al. 1993 ; Meynet et al. 1994 ; Langer et al.
1994). However, there are problems with this picture : no
demonstrated mechanism of mass loss has been discovered
that actually supports the conventional scheme ; the time-
averaged empirical rates of mass loss from LBVs are several
orders of magnitude too small to be relevant ; the predicted
masses, luminosities, and e†ective temperatures of LBVs
cover much wider ranges than those actually observed ; and
the stellar models do not yield anything like the observed
cycles of mass loss.

A more speciÐc theory of LBVs has recently been pro-
posed which provides many points of detailed agreement
with observations over the range of luminosities where the
classical LBVs are observed (Stothers & Chin 1996). The
new theory is based on a demonstrated mechanism of mass
loss that clearly exists in well-evolved stellar models : clas-
sical ionization-induced dynamical instability. The insta-
bility occurs in the outer layers of the envelope, during two
di†erent evolutionary phases : once, brieÑy, either just
before the beginning or at some time during the main stages
of central helium burning, when the star is a yellow or red
supergiant ; and later, for a much longer time, toward the
end of central helium burning, when the star is again a blue
supergiant with only a small hydrogen envelope left. Nearly
all LBVs are predicted to be in the second phase of dynamic
instability, with most of the mass loss having already taken
place in or before the Ðrst phase. In essential agreement
with observations are the detailed model predictions for the
LBV masses, luminosities, e†ective temperatures, surface
hydrogen abundances, lifetimes, eruptive mass-loss rates,
and secular cycles of mass loss.

Although most of the evidence suggests that the basic
mechanism for the LBV instability has probably been cor-
rectly identiÐed, there do exist some discrepancies in detail.
For example, the e†ective temperatures and surface hydro-
gen abundances of the models are somewhat too low. This
problem is serious enough to warrant further study.

An obvious physical factor that has not been included in
the models so far is axial rotation. Massive stars on the
main sequence are observed to include a very large propor-
tion of rapid rotators. Furthermore, some LBVs show non-
spherical winds and surrounding nebulae, which might
indicate rotation in the underlying star. It is therefore
important to investigate whether the inclusion of axial rota-
tion in the stellar models would signiÐcantly a†ect our
current predictions. Since dynamical instability of the pro-
posed type is governed entirely by conditions in the outer
envelope, it will suffice, for the moment, to conduct a series
of parameter studies of stellar outer envelopes. This can be
done by simply assigning to the star a present mass, lumi-
nosity, e†ective temperature, surface chemical composition,
and envelope rotational angular velocity.

In ° 2 the usual criterion for dynamical instability is
modiÐed to include axial rotation. Applications to stellar
envelope models are made in ° 3, and are followed by a
discussion of the main results in ° 4.

2. CRITERION FOR DYNAMICAL INSTABILITY

2.1. Exact Criterion
Three assumptions will be made in order to test for

dynamical instability in a rotating LBV. First, the rate of
rotation is taken to be slow, so as to preserve, approx-
imately, the spherical symmetry of the stellar envelope and
to keep the oscillations essentially radial. (In practice, the
restriction to slow rotation can be dropped without great
loss of accuracy.) Second, each mass shell conserves its
angular momentum during the oscillations. Third, the per-
turbations are assumed to be strictly adiabatic. When all of
the acting forces are averaged over a spherical surface (° 3),
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the linearized wave equation for small radial adiabatic dis-
placements becomes (Stothers 1981)
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Here dr is the displacement amplitude, p is the adiabatic
oscillation eigenfrequency (2n/period), is the Ðrst gener-!1alized adiabatic exponent, o is the density, P is the pressure,
V \ [(d ln P)/(d ln r), j \C\ (d ln !1)/(d ln r),

and ) is the angular velocity of rotation.23)2r3/GM(r),
Solutions occur for those values of p2 for which dr is Ðnite
at the surface and zero at the base of the stellar envelope.
The necessary and sufficient condition for dynamical insta-
bility is then that p2¹ 0 for the lowest adiabatic mode. This
adiabatic criterion is already known to be rigorously
correct for the simple one-zone model of a star subjected to
a fully nonadiabatic linear stability analysis (Jeans 1929 ;
Baker 1966 ; Stothers 1981). There is no reason to doubt
that it is applicable to a distributed stellar model as well.

Glatzel & Kiriakidis (1998) have recently contended that
the nonadiabatic radial oscillation eigenfrequency should be
used to test for dynamical instability. However, as shown by
the one-zone model (Stothers & Chin 1997) as well as by
numerical calculations of distributed stellar models
(Tuchman, Sack, & Barkat 1978 ; Stothers 1999), the non-
adiabatic contribution shows up only as pulsational insta-
bility, in the form of periodic oscillations superimposed on
the quasi-adiabatic, dynamical expansion of the outer
envelope. Dynamical instability itself is an adiabatic
phenomenon, not related to the pulsational instability.

2.2. Approximate Criterion
For a star in slow uniform rotation, Ledoux (1945)

showed analytically that rotation tends to stabilize the star
dynamically. This conclusion has been veriÐed (in great
generality) by many authors, most recently by Hazlehurst
(1994), who refutes some minority objections to it. SpeciÐ-
cally, rotation increases the value of p2. According to
Ledoux,

p2\ (3S!1T [ 4)([W /I)] (5[ 3S!1T)()J/I) , (2)

for a star with a low central condensation. Here is aS!1Tweighted average of the Ðrst generalized adiabatic expo-
nent, W is the total gravitational potential energy, J is the
total angular momentum, and I is the total moment of
inertia with respect to the center. Since the outer envelope
of an LBV below the expanding atmosphere resembles an
inÑated balloon of negligible mass with a low central con-
densation (small density gradient) and the oscillation ampli-
tude in the layers beneath the outer envelope is e†ectively
zero (Stothers & Chin 1993 ; Stothers 1999), LedouxÏs
expression for p2 should apply especially well to LBVs,
provided that the lower cuto† for the radius in the integral
expressions for W , J, and I is applied at the base of the
outer envelope rather than at the stellar center.

Ledoux (1945) gave also the conservation of energy equa-
tion :
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P
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The criterion for dynamical instability, p2¹ 0, follows from
equations (2) and (3) as
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and r* is the radius of the base of the outer envelope.
An alternative, slightly less accurate, criterion can be

derived in a similar way. By setting o \ constant in the limit
of negligible central condensation, equation (2) reduces to

p2\ [(5/2)(3S!1T [ 4)] (5[ 3S!1T)j
R
]GM/R3 , (7)

where is the surface value of j. (The factor 5/2 in the Ðrstj
Rterm on the right-hand side would be replaced by unity if

the oscillations remained large down to the stellar center.)
In the present case, the condition p2¹ 0 becomes
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4
3

[ 2j
R
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As a simple criterion for dynamical instability, one may
adopt either equation (4) or equation (8). These two approx-
imate criteria actually become equal and exact if the radius
displacements are homologous, as they are when the equi-
librium values of o and are spatially constant. The value!1of is easily derived from the equilibrium properties ofS!1Tthe stellar model, and so can be used to test for dynamical
instability without having to solve the radial adiabatic wave
equation (1). In the models of the present paper, however,
the wave equation has been integrated exactly.

3. STELLAR MODELS

A stellar envelope, as viewed from the top down, is just an
inwardly extended stellar atmosphere, and therefore it can
be characterized by the starÏs total mass (M), luminosity (L ),
e†ective temperature chemical abundance parameters(T

e
),

(hydrogen fraction, X, and metallicity, Z), and envelope
angular velocity ()).Because the gravitational acceleration
is not constant deep in the envelope, M and L (rather than
g) must be speciÐed. Although our Ðrst estimates of M, L ,

X, and Z will be taken from the evolutionary tracks forT
e
,

massive stars computed by Stothers & Chin (1996), adjust-
ments to these estimates must be made for the e†ects of
rotation and will be discussed below. For a model of a
nonrotating LBV, we choose one (called here our prototype
LBV model) in a stage of marginal dynamical instability
(p2\ 0 or taken from our evolutionary trackS!1T B 4/3)
for a star of initially 45 The modelÏs surface parametersM

_
.

are M/M
_

\ 18, log (L /L
_
) \ 5.75, log T

e
\ 4.04,

X \ 0.175, and Z\ 0.03. As noted earlier, and X areT
esomewhat discrepant with respect to observations ; further

model evolution, however, is known to bring closer toT
ethe observed values while preserving the dynamical insta-

bility (Stothers & Chin 1996, Fig. 1). In all of our unstable
LBV models, is small because of the high radiationS!1Tpressure relative to gas pressure and because of the exten-
sive ionization zones of hydrogen and helium. Our particu-
lar choice of unstable model is not important here, however.

The structure of the envelope of the selected model must
now be recalculated with rotation included. In order to
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calculate the structure of a stellar envelope in uniform rota-
tion, even one close to breakup at the surface, the mean
sphere approximation can be used and turns out to be sur-
prisingly good (Sackmann & Anand 1970). All of the physi-
cal quantities can be understood to represent suitable
averages over a spherical surface, r being a mean radius.
The only changes required in the structural equations for a
nonrotating stellar envelope are the multiplication of the
gravitational acceleration by 1[ j in the equation of
hydrostatic equilibrium, and the multiplication of the radi-
ative Ñux by 1 ] 50.8j5.27 in the equation of radiation
transfer (Faulkner, Roxburgh, & Strittmatter 1968). The
latter term can be approximated here by unity everywhere,
because j nowhere exceeds the maximum value ofj

R
,

which, for equatorial breakup velocity, is 0.3007 (Sackmann
& Anand 1970).

Rotation a†ects the dynamical stability of a stellar
envelope in both direct and indirect ways. The direct e†ects
come through the introduction of the rotational kinetic
energy and through the changes of the hydrostatic pressures
in the envelope. Indirect e†ects arise from the inÑuence of
rotation on the overall evolution of the star. Thus, when the
star reaches a particular evolutionary stage, the starÏs
surface parameters (M, L , X, Z) di†er from those thatT

e
,

the star would have had in this stage if it were not rotating.

3.1. Direct E†ects of Rotation
By reducing the e†ective gravity, rotation lowers the

hydrostatic pressures in the envelope for a Ðxed e†ective
temperature, and thus directly reduces the envelope den-
sities. Gas pressure thereby becomes diminished relative to
radiation pressure and so drops, an e†ect that tends to!1destabilize the envelope.

A very simple expression for the ratio of gas pressure to
total pressure, b, can be derived for the case of a uniformly
rotating envelope of uniform density. Integrating the equa-
tion of hydrostatic equilibrium and the equation of radi-
ative transfer using a constant opacity, i, and deÐning the
radius fraction x \ r/R, we Ðnd

1 [ b \ f (x)iL /(4ncGM) , (9)

where

f (x)\ 2(1[ x)/(2 [ 2x [ j
R

x ] j
R
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If x \ 1, whereas if x > 1, f (x) Bf (x)\ (1 [ j
R
)~1,

Thus, as increases, b decreases. This e†ect,(1[ xj
R
/2)~1. j

Rhowever, is always small, because f (x) is everywhere (except
near the surface) close to unity. In our prototype LBV
model, actually drops by only 0.0006 when the rota-S!1Ttion parameter is set to its largest theoretically possible
value, j

R
\ 0.3007.

Nearly all of rotationÏs direct inÑuence on dynamical sta-
bility, therefore, arises from the rotational kinetic energy, as
seen from equation (2). Calculations based on our prototype
LBV model yield for the change of the square of the non-
dimensional eigenfrequency u2\ p2R3/GM :

du2B dj
R

, (11)

for all in very close agreement with the approximatej
R
,

equation (7). Rotational kinetic energy provides a stabili-
zing inÑuence.

The Eddington limit on the luminosity, with rotation
included, follows from evaluating equation (9) at the mean-

sphere surface with b \ 0, since b cannot be negative. Thus,

L E\ 4ncG(1[ j
R
)M/i . (12)

Evaluated alternatively at the surface equator, thisR
e
,

expression would have replaced by1 [ j
R

1 [ )2R
e
3/GM.

In either case, rotation always reduces the Eddington limit.
Langer (1997) approached the problem from the point of
view that rotational instability occurs before the non-
rotational Eddington limit is reached. Since, however, the
Eddington limit was originally derived as a balance of all
the forces acting (Eddington 1921), the addition of rotation
to these forces simply causes a modiÐcation of the expression
for the limiting Eddington luminosity, rather than an inde-
pendent rotational instability.

3.2. Indirect E†ects of Rotation
Rotation a†ects the course of stellar evolution and, as a

consequence, the onset of dynamical instability. Although
evolutionary tracks with rotation included have not yet
been calculated for complete models of LBVs, the possible
magnitudes of the changes in u2 are simple to compute
based on our prototype LBV model envelope. It is then
found that

du2B 3d log M , du2B [3d log L , du2B [0.5dX .

(13)

The variations in u2 caused by small changes of mass and
luminosity are nearly equal, although opposite in sign,
because the ratio L /M is nearly constant for stellar
envelopes with small b (eq. [9]). The variations arising from
small changes of the hydrogen abundance X are so minor
that they can evidently be ignored. However, the magni-
tudes (although not the signs) of the coefficients in equa-
tions (13) prove to be somewhat model dependent owing to
their sensitivity to partial ionization of the gas.

4. DISCUSSION

An upper limit can be placed on the value of duringj
Rthe LBV phase. In the initial main-sequence stage, a star of

45 rotating uniformly at equatorial breakup velocityM
_has j \ 0.015 in the 18 layer. Assuming local conserva-M

_tion of angular momentum, this layer later would show
j \ 0.0002 when it eventually became exposed as the
surface layer of an 18 LBV. In reality, however, thereM

_must be some redistribution of angular momentum within
the evolving hydrogen envelope owing to the presence of
rotational and convective mixing currents, as well as surface
mass and angular momentum losses (Heger & Langer
1998). Therefore, a relatively Ðrm upper limit for in thej

RLBV phase in this example can be set at the value of 0.015.
With we Ðnd du2¹ 0.015 as the direct e†ectj

R
¹ 0.015,

of rotation on u2. This stabilizing inÑuence, however, is too
minor to be of much importance.

As for the indirect e†ects, it is already known from theo-
retical studies of rotating main-sequence stars that the
lifting e†ect of the centrifugal force for an assigned value of

lowers the luminosity by a small percentage that is morej
Ror less independent of the starÏs mass. This reduction of the

luminosity lengthens the starÏs lifetime both during and
after the main-sequence phase. In the late stages of central
helium burning, however, the increase of lifetime is so pro-
nounced that the hydrogen-burning shell adds enough new
mass to the helium core as to actually increase the total
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luminosity of the star, at least for stars in the mass range
5È9 (Kippenhahn, Meyer-Hofmeister, & Thomas 1970 ;M

_Meyer-Hofmeister 1972). This luminosity increment can
amount to d log L \ 0.04 if the star was originally rotating
at equatorial breakup velocity. It might be less for more
massive stars, which lose a substantial amount of mass
before the LBV phase and consequently have weaker
hydrogen-burning shells ; moreover, the luminosity rises less
steeply with the helium core mass in such massive stars, and
the Eddington limit on the luminosity declines with rota-
tion in proportion to For a given LBV mass, there-(1 [ j

R
).

fore, d log L would probably be less than 0.04.
Using as a basis our published models of nonrotating

LBVs with various masses (Stothers & Chin 1996), we Ðnd
that the critical e†ective temperature at which the second
phase of dynamical instability begins changes with the starÏs
luminosity approximately as

d log T
e
B 4.5d log L . (14)

This result is valid for any small luminosity increase whether
or not it is rotationally induced. As an extreme value, we take
d log L \ 0.04. The maximum shift of e†ective temperature
is then although the actual rotationallyd log T

e
B 0.18,

induced increase is likely to be much smaller.
This upward shift, nevertheless, goes in the direction of

improved agreement with the observed e†ective tem-
peratures of the more luminous LBVs, which are somewhat
hotter than we had predicted on the basis of nonrotating
stellar models. More reÐned estimates of the shift would
require information about the initial angular momenta and
subsequent rotational histories of individual observed
LBVs.
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